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Abstract. The renormalization group theory i s  used to calculate the critical behaviour of 
selfwoiding walks which cross a square. This problem, which has been proposed recently, 
is especially well suited for a renormalization group analysis. The fixed-endpoint, diagonal- 
span trademark of the square-crossing walks leads naturally to a well defined renormaliz- 
ation scheme. Unlike other finite-lattice renormalization schemes for self-avoiding walks, 
this square-crossing renormalization is exact in the sense that the finite lattice (square) is 
uniquely defined, the spanning rule is unambiguous, and the end-to-end correlations are 
exactly preserved. The results for the critical point are in excellent agreement with series 
analysis estimates and support a conjecture on its exact value. 

1. Introduction 

Recently, Whittington and Guttmann [ l ]  have proposed a new kind of self-avoiding 
walk problem and proved some rigorous statistical results. They consider self-avoiding 
walks on the square lattice which are confined to the interior or the boundary of a 
square with vertices at (O,O), (L ,  0), (0, L )  and ( L ,  L) .  In particular, they focus on the 
class of self-avoiding walks which begin at the point (0,O) and end at the point (L, L ) .  
Their two primary results are that the number of these self-avoiding walks which cross 
the square scales (for large L )  like a constant to the power L2, and a proof of the 
existence of a phase transition when a fugacity is associated with each step of the 
walk. Although their study does not identify the exact location of the phase transition 
point (critical fugacity), they do provide a numerical estimate based on series analysis 
of the exact (small L )  statistics. 

In this paper, the real space renormalization group theory is used to calculate the 
critical point and a critical exponent of the square-crossing self-avoiding walk problem, 
This problem is an  excellent candidate for the renormalization group theory. The 
results of this theory for the critical point are in excellent agreement with the estimates 
of Whittington and Guttmann [ l ]  and support their conjecture on its exact value. In 
section 2, the renormalization group theory is formulated. In section 3, the results are 
presented. Section 4 is a discussion. 

2. Renormalization 

This self-avoiding walk problem is ideallysuited for a renormalization group analysis. 
First of all, the constraint that forces all the walks to span the L x L lattice between 
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the two fixed points (0,O) and ( L ,  L )  captures the essence of preserving the correlations 
(end-to-end distance) in the renormalization group formulation. Secondly, the set of 
lattice walk problems defined by the different values of L is precisely the set of lattice 
walk problems that are related by a renormalization (scale) transformation. In other 
words, studying the self-avoiding walk statistics as a function of the square size L is 
equivalent to studying the system at different length scales via a renormalization map. 
The connection between two lattice walk problems with differing L will uniquely 
determine the renormalization map. 

To define the renormalization, we consider the statistical mechanics of this lattice 
statistics problem. Where possible, we use the same notation as Whittington and 
Guttmann [I]. The lattice is an L x  L square lattice with one vertex at (0,O) and the 
diagonally opposed vertex at ( L ,  L) .  Self-avoiding walks are embedded on this finite 
lattice with the constraint that they must begin at (0,O) and end at ( L ,  L ) ,  A fugacity 
x is associated with each step of the walk. The grand partition function (generating 
function) C,(x) is defined by 

where the partition function c,,(L) is the number of self-avoiding walks with n steps 
that cross this square of side L. This partition function can be interpreted as the 
correlation function between the endpoints of the walk separated by a distance d? L. 
It should also be noted that the summation over n goes from a minimum value of 2 L  
to a maximum value of L 2 + 2 L  if L is even and L2+2L- 1 if L is odd. 

It has been proven [ I ]  that this grand partition function is non-analytic in the large 
L thermodynamic limit at some singular point so in the range 

(2.2) 

The lower bound is determined by p, which is the connective (growth) constant for 
unconstrained self-avoiding walks on the square lattice. The best numerical estimate 
of p is 2.6381 [2] .  The upper bound depends on p H ,  which is the connective constant 
for Hamiltonian polygons on the square lattice. Whittington and Guttmann [ I ]  have 
analysed exact series data for L s 6  and estimate that xn is between 0.3 and 0.4. From 
their rigorous result that x o a  /L-' = 0.379, they conclude that xo is between 0.379 and 
0.4. They conjecture that the phase transition occurs exactly at a critical point xu= p-' = 
0.379. 

In this paper, the critical point so is calculated using the renormalization group 
theory. The renormalization consists of a mapping of the self-avoiding walk system at 
microscopic length scale (lattice spacing) I to a system at length scale hi, where the 
scale factor b> 1. The mapping must preserve the macroscopic physics (statistics), 
and thus must leave the grand partition function invariant. We consider a finite lattice 
renormalization that maps an L x L square onto an L'x L' square where L'< L. This 
corresponds to a change in length scale from I to bl where b = L / L ' .  This kind of 
finite-lattice (cell-to-cell) renormalization scheme is known [3-5] to be very accurate 
for small b. It has been shown [4 ,5 ]  in other self-avoiding walk and lattice statistics 
problems that the cell-to-cell renormalization with h = f  is comparable in accuracy to 
that of a cell-to-bond renormalization with b=40-80. The accuracy improves as  b 
decreases and in the limit b = I ,  the corresponding infinitesimal renormalization is 
exact [4-71. Hence for accuracy, we choose L = L -  I .  Figure 1 illustrates this square-to- 
square renormalization for an L = 5 square. Under the renormalization, the class of 

- 1  /L < x " s p ; ' .  
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Figure 1. The finite-lattice renormalization from an L =  5 square to an L'=4 square. The 
corresponding change in length scale (lattice spacing) is from I to bf  where the scale factor 
b = d .  The set of all self-avoiding walks which cross the 5 x 5 square arc mapped (renormal- 
ized) Onto the set which cross the 4 x 4  square. The beginning (0) and the ending (0) 
points of these diagonally spanning walks are shown an the lattices. 

self-avoiding walks that cross the L x  L square are mapped (renormalized) onto that 
class which cross the L ' x  L' square. 

It is important to emphasize that this finite-lattice renormalization scheme for 
self-avoiding walks which cross a square is exact. The finite lattice is exactly determined 
by the square. The weight function or projection is characterized by a well defined 
and unambiguous spanning rule that emerges naturally from the trademark of this 
self-avoiding walk problem: a walk must span the lattice by beginning at (0,O) and 
ending at ( L ,  L) .  The renormalization exactly preserves this fixed-endpoint diagonal 
span. These features are in contrast to other renormalization schemes for unconstrained 
self-avoiding walks which are not well defined or  unique. These other schemes are 

walks should begin or  end, by ambiguities in the intercell correlations, or by ambiguities 
in  the cell cluster geometry [4]. 

Under the renormalization, the fugacity x is mapped onto a renormalized fugacity 
x' that is determined in the standard way [4 ,5]  by the preservation of the grand 
partition function: 

plagued by ambiguities i n  the spanning rule which canno! uniquely specify where !he 

C,(x) = Cu(x'). ( 2 . 3 )  

This invariance relation implicitly determines x' as a function of x corresponding to 
the scale factor b = L / C .  We denote this renormalization map by 

x' = f h ( X ) .  (2.4) 

The fixed point xo of this map is determined by 

x " = h ( x " )  (2.5) 

or equivalently by the grand partition function relation 

C L ( X ! J  = CL.(xLI). ( 2 . 6 )  

This fixed point of the renormalization map is the critical point of the phase transition. 
Hence from equations (2.1) and (2 .6) ,  the critical point x,) is determined by 
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The renormalization theory can also be used to calculate the critical exponent 
associated with the average number of steps in the walk. The average number of steps 
in a self-avoiding walk with fugacity x on an L x L square is defined by 

This quantity can be generated from the grand partition function (2.1) according to 

This expression, together with (2.3), provides the renormalization group equation that 
relates the average number of steps on two different squares of size L and L'. At the 
fixed point xo, we find 

(n(xo ,  L ) ) = ( n ( x a ,  c))fb(xd (2.10) 

where 

If we define the critical exponent y by the scaling behaviour 

( n ( x , L ) ) - L "  L + W  

then from (2.10), this exponent is determined by 

logf  h) 
'= logb 

(2.11) 

(2.12) 

(2.13) 

where b = L /  L'. Thus the critical exponent y can be calculated from the renormalization 

From finite-size scaling theory [ 5 , 8 ]  applied to ordinary (unconstrained) self- 
avoiding walks, the critical index y = l /  U, where Y is the standard (end-to-end distance) 
critic.! exponent for ordinzry wz!ks an !he i n f i n i !~  !.!tic.. Far the sqwre-crossing 
walk problem, this connection is also suggested by the fact that the end-to-end distance 
R of walks which cross an L x  L square is 

R = & L .  (2.14) 

map Jib). 

From (2.12), this can be expressed as 

R - ( n ( x , ,  L))"y.  (2.15) 

3. Results 

We use equation (2.7) to calculate the critical point xu as a function of the scale factor 
b = L / L ' .  The series coefficients c , ( L )  were taken from Whittington and Guttmann [ I ]  
who have computed them exactly for L S 6 ,  which corresponds to n s 4 8 .  The results 
are displayed in table 1 and graphed in figure 2. The critical point displays a surprisingly 
accurate and suggestive linear dependence on l l b .  Extrapolation of the data to the 
exact limit b = 1 yields an estimate for the critical point of x,= 0.373. Also shown on 
the graph in figure 2 is the result of a square-to-bond renormalization. It is known [41 
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Table 1. The critical point xo and the critical exponent y as a function of the scale factor 
b far a square-to-square renormalization. 

0.5250 1.133 
i 0.4741 1.178 
1 0.4488 1.210 

0.4336 1.235 
i 0.4235 1.257 

l / b  
Figure 2. The critical point xo as a function ofthe inverse scale factor I l h  far a square-to- 
square (0) and a square-to-bond (0) renormalization. The best fit curves through the data 
points provide estimates far the exact critical point where they intersect the I l b  = O  axis 
and the I l b  = I axis. 

that this type of (cell-to-bond) renormalization scheme improves in accuracy as b 
increases and becomes exact in the limit b = m. We have performed this square-to-bond 
calculation in order to compliment the square-to-square renormalization which is exact 
in the opposite limit b = 1. A polynomial fit to the square-to-bond data yields the exact 
limit b = m estimate for the critical point of xg = 0.383. 

We calculate the critical exponent y from the renormalization map (eigenvalue of 
linearized map) according to equation (2.13). The results are displayed in table 1. 
Based on finite-size scaling [4,5], the difference between the approximate critical 
exponent and its exact value should converge to zero according to In b as b approaches 
1 for the square-to-square renormalization (and according to l / l n  b as b approaches 
m for a square-to-bond renormalization). Thus, to estimate the exact critical exponent, 
we have extrapolated the data according to this finite-size scaling behaviour. The data 
is graphed in figure 3. The square-to-square renormalization yields an estimate for the 
critical exponent of 1.35. The square-to-hand estimate is 1.27. Based on alternative 
extrapolation methods, and indeed from a rough visual extrapolation of the data, one 
can estimate that the critical exponent must fall (conservatively) in the range between 
1.27 and 1.45. For this reason, and since the square-to-square renormalization scheme 
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I / l n  b 
0 

0 0 2  04 06 

In b 
0 

Figure3. The critical  exponent.^ as a function of In b for a square-to-square 10) renormaliz- 
ation and I / ln  b for a square-to-bond (0) renormalization. The extrapolated points at 
b = I (square-lo-square) and b =a (square-to-bond) provide estimates for the exact critical 
exponent. 

is known to be more accurate [ 5 ] ,  the best estimate for the critical exponent is taken 
to be y = 1.35. 

4. Discussion 

The renormalization group theory has been used to calculate the critical point of 
self-avoiding walks which cross a square. In order to optimize our results, we have 
performed two kinds of renormalization that compliment one ..other. !E the exact 
limit that the scale factor b = I ,  a square-to-square renormalization calculation yields 
an estimate for the critical point of .r,=O.373. In the opposite exact limit b =m, a 
square-to-bond renormalization yields an estimate of xo = 0.383. These values are 
consistent with the series analysis results of Whittington and Guttmann [l] which 
predict that 0.3 < xo< 0.4. Furthermore, our results support their conjecture that the 

The renormalization theory has also been used to calculate the critical exponent 
associated with the average number of steps in the walks. We find a best estimate value 
for the critical exponent of y = 1.35. Away from the critical point, the average number 
of steps has been considered by Whittington and Guttmann [I] .  For x = 1, they prove 
that y = 2 .  Furthermore, they observe that the critical point x = x o  represents the 
transition from a regime ( x < x J  where walks of order L steps dominate ( y =  1)  to a 
regime ( x >  xo) where walks of order L’ steps dominate ( y  = 2). Our result for the 
exponent at the critical point is consistent with this interpretation of the phase transition 
in terms of the average number of steps in the walks. 

Furthermore, our results for the critical point and the critical exponent are suggestive 
that this square-crossing self-avoiding walk problem is in the same universality Class 

exact value of xo = 0.379, 
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as the ordinary (unconstrained) self-avoiding walk problem. For the ordinary self- 
avoiding walk problem in two dimensions, the best estimate for the critical point xo 
is 0.379 06 [21, while the critical exponent U is believed to be exactly f [9]. If one 
identifies y with l l u ,  then the agreement between these critical descriptors and those 
obtained in this paper suggests universality. Clearly, a more complete phase diagram 
analysis is necessary to establish such universality. 

This self-avoiding walk problem is interesting and relevant for two primary reasons. 
First of all, it is a simple realization of a self-avoiding walk system that exhibits a 
non-trivial phase transition. Hence, it can provide insight into polymer systems and 
critical phenomena in general. Secondly, it is a custom-designed model for use with 
the renormalization group theory. The model has built-in features which make it 
especially compatible with the ideas of renormalization. The most notable features are 
that it is defined on a sequence of finite lattices (squares) that can be related by a scale 
factor, and that all the walks must diagonally span each lattice between two fixed 
endpoints (which automatically preserves the endpoint correlations). Unlike other 
real-space renormalization schemes for self-avoiding walks, the renormalization of 
square-crossing walks is unambiguous (with regards to the connectivity rule, the 
endpoint correlations and the cell geometry) and exactly conforms to the basic ideas 
of the renormalization theory. Hence, in addition to providing insight into polymers 
and critical phenomena, this self-avoiding walk system can serve as a paradigm for, 
and can test the concepts of, real-space renormalization and finite-size scaling. 
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